
7 Electron–proton elastic scattering

In e+e− collisions, the initial-state particles are fundamental fermions. Conse-
quently, the cross sections for processes such as e+e− annihilation are deter-
mined by the QED matrix element and the event kinematics (phase space)
alone. Calculations of cross sections for collisions involving protons, for
example at an electron–proton collider or a hadron collider, also need to
account for the composite nature of the proton. This chapter describes low-
energy electron–proton elastic scattering. The main purpose is to provide an
introduction to a number of concepts which form the starting point for the
description of the high-energy interactions of protons that is the main topic of
the following chapter.

7.1 Probing the structure of the proton

Electron–proton scattering provides a powerful tool for probing the structure of the
proton. At low energies, the dominant process is elastic scattering where the pro-
ton remains intact. Elastic scattering is described by the coherent interaction of a
virtual photon with the proton as a whole, and thus provides a probe of the global
properties of the proton, such as its charge radius. At high energies, the dominant
process is deep inelastic scattering, where the proton breaks up. Here the underly-
ing process is the elastic scattering of the electron from one of the quarks within the
proton. Consequently, deep inelastic scattering provides a probe of the momentum
distribution of the quarks.

The precise nature of the e−p → e−p scattering process depends on the wave-
length of the virtual photon in comparison to the radius of the proton. Electron–
proton scattering can be broadly categorised into the four classes of process shown
schematically in Figure 7.1:

(a) at very low energies, where the electrons are non-relativistic and the wavelength
of the virtual photon is large compared to the radius of the proton, λ # rp, the
e−p → e−p process can be described in terms of the elastic scattering of the
electron in the static potential of an effectively point-like proton;
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!Fig. 7.1 The nature of e−p scattering depending on the wavelength of the virtual photon.

(b) at higher electron energies, where λ ∼ rp, the scattering process is no longer
purely electrostatic in nature and the cross section calculation also needs to
account for the extended charge and magnetic moment distributions of the
proton;

(c) when the wavelength of the virtual photon becomes relatively small, λ < rp,
the elastic scattering cross section also becomes small. In this case, the dom-
inant process is inelastic scattering where the virtual photon interacts with a
constituent quark inside the proton and the proton subsequently breaks up;

(d) at very high electron energies, where the wavelength of the virtual photon
(λ % rp) is sufficiently short to resolve the detailed dynamic structure of the
proton, the proton appears to be a sea of strongly interacting quarks and gluons.

Whilst we will be interested primarily in the high-energy deep inelastic e−p scatter-
ing, the low-energy e−p elastic scattering process provides a valuable introduction
to a number of important concepts.

7.2 Rutherford and Mott scattering

Rutherford and Mott scattering are the low-energy limits of e−p elastic scattering.
In both cases, the electron energy is sufficiently low that the kinetic energy of the
recoiling proton is negligible compared to its rest mass. In this case, the proton can
be taken to be a fixed source of a 1/r electrostatic potential. The cross sections for
Rutherford and Mott scattering are usually derived from non-relativistic scattering
theory using the first-order 〈ψ f |V(r)|ψi〉 term in the perturbation expansion. Here
the cross sections are derived using the helicity amplitude approach of the previous
chapter, treating the proton as if it were a point-like Dirac particle. Provided the
wavelength of the virtual photon is much larger than the radius of the proton, this
is a reasonable approximation.
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ν!Fig. 7.2 Rutherford scattering of an electron from a proton at rest in the laboratory frame and the corresponding
Feynman diagram.

In the limit where the proton is taken to be a point-like Dirac fermion, the matrix
element for the Feynman diagram for low-energy e−p elastic scattering, shown in
Figure 7.2, is given by

M f i =
Qqe2

q2

[
u(p3)γ µu(p1)

]
gµν

[
u(p4)γνu(p2)

]
. (7.1)

From (4.65), the Dirac spinors describing the two possible helicity states of the
electron can be written in the form

u↑ = Ne




c
seiφ

κc
κseiφ




and u↓ = Ne




−s
ceiφ

κs
−κceiφ



,

where Ne =
√

E + me, s = sin (θ/2) and c = cos(θ/2). The parameter κ is given by

κ =
p

E + me
≡ βeγe

γe + 1
,

where βe and γe are respectively the speed and Lorentz factor of the electron. Writ-
ing the electron spinors in terms of the parameter κ clearly differentiates between
the non-relativistic (κ % 1) and highly relativistic (κ ≈ 1) limits. If the velocity
of the scattered proton is small, its kinetic energy can be neglected, and to a good
approximation the energy of the electron does not change in the scattering process.
Hence the same value of κ applies to both the initial- and final-state electron. For
an electron scattering angle θ (see Figure 7.2) and taking the azimuthal angle for
the electrons to be φ = 0, the possible initial- and final-state electron spinors are

u↑(p1) = Ne




1
0
κ
0



, u↓(p1) = Ne




0
1
0
−κ




and u↑(p3) = Ne




c
s
κc
κs



, u↓(p3) = Ne




−s
c
κs
−κc



.
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The electron currents for the four possible helicity combinations, calculated from
(6.12)–(6.15), are

je↑↑ = u↑(p3)γµu↑(p1) = (E + me)
[
(κ2 + 1)c, 2κs,+2iκs, 2κc

]
, (7.2)

je↓↓ = u↓(p3)γµu↓(p1) = (E + me)
[
(κ2 + 1)c, 2κs,−2iκs, 2κc

]
, (7.3)

je↓↑ = u↑(p3)γµu↓(p1) = (E + me)
[
(1 − κ2)s, 0, 0, 0

]
, (7.4)

je↑↓ = u↓(p3)γµu↑(p1) = (E + me)
[
(κ2 − 1)s, 0, 0, 0

]
. (7.5)

Thus, in the relativistic limit where κ ≈ 1, only two of the four helicity combi-
nations give non-zero electron currents, reflecting the chiral nature of the QED
interaction vertex. At lower energies, where κ < 1, all four helicity combinations
give non-zero matrix elements; in this limit the helicity eigenstates no longer cor-
respond to the chiral eigenstates and helicity is not conserved in the interaction.

In the limit where the velocity of the recoiling proton is small (βp% 1), the
lower two components of the corresponding particle spinors are approximately zero
(since κ ≈ 0). Taking the spherical polar angles defining the direction of the (rel-
atively small) recoil momentum of the proton as (θp = η, φp = π), the initial-state
and final-state protons can be described respectively by the helicity states

u↑(p2)=
√

2mp




1
0
0
0



≡ u1(p2) and u↓(p2)=

√
2mp




0
1
0
0



≡ u2(p2),

and

u↑(p4)≈
√

2mp




cη
−sη
0
0




and u↓(p4)≈
√

2mp




−sη
−cη
0
0



,

where cη = cos(η/2) and sη = sin(η/2). The proton four-vector currents for the four
possible combinations of the initial- and final-state helicity states, again calculated
using (6.12)−(6.15), are

jp↑↑ = − jp↓↓ = 2mp

[
cη, 0, 0, 0

]
and jp↑↓ = jp↓↑ = −2mp

[
sη, 0, 0, 0

]
. (7.6)

Thus, in the limit where the proton recoil momentum is small, all four spin combi-
nations for the proton current contribute to the scattering process.

From the QED matrix element,

M f i =
e2

q2 je · jp,
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and the expressions for the electron and proton currents of (7.2)–(7.6), the spin-
averaged matrix element squared is

〈|M2
f i|〉 =

1
4

∑
|M2

f i|

=
1
4

e4

q4 × 4m2
p(E + me)2 ·

[
c2
η + s2

η

]
·
[
4(1 + κ2)2c2 + 4(1 − κ2)2s2

]

=
4m2

pm2
ee4(γe + 1)2

q4

[
(1 − κ2)2 + 4κ2c2

]
, (7.7)

where in the last step, the electron energy was written as E = γeme. The above
expression can be simplified further by writing

κ =
βeγe

γe + 1
and (1 − β2

e)γ2
e = 1,

in which case, after some algebraic manipulation, (7.7) becomes

〈|M2
f i|〉 =

16m2
pm2

ee4

q4

[
1 + β2

eγ
2
e cos2 θ

2

]
. (7.8)

In the t-channel e−p → e−p scattering process, the square of four-momentum
carried by the virtual photon is given by

q2 = (p1 − p3)2.

For the elastic scattering process where the recoil of the proton can be neglected,
the energies and momenta of the initial- and final-state electrons are E1 = E3 = E
and p1 = p3 = p, and hence

q2 = (0,p1 − p3)2 = −2p2(1 − cos θ) = −4p2 sin2(θ/2).

Substituting this expression for q2 into (7.8) gives

〈|M2
f i|〉 =

m2
pm2

ee4

p4 sin4(θ/2)

[
1 + β2

eγ
2
e cos2 θ

2

]
. (7.9)

Provided the proton recoil can be neglected, this matrix element is equally appli-
cable when the electron is either non-relativistic or relativistic.

7.2.1 Rutherford scattering

Rutherford scattering is the limit where the proton recoil can be neglected and
the electron is non-relativistic, βeγe % 1. In this case, the spin-averaged matrix
element squared of (7.9) reduces to

〈|M2
f i|〉 =

m2
pm2

ee4

p4 sin4(θ/2)
. (7.10)
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The laboratory frame differential cross section is obtained from the cross section
formula of (3.48),

dσ
dΩ
=

1
64π2

(
1

mp + E1 − E1 cos θ

)2

〈|M f i|2〉. (7.11)

In the Rutherford scattering limit, where the electron is non-relativistic, E1 ∼ me %
mp, and (7.11) therefore reduces to

dσ
dΩ
=

1
64π2m2

p
〈|M f i|2〉 =

m2
ee4

64π2p4 sin4(θ/2)
. (7.12)

Equation (7.12) can be expressed in the more usual form by writing the kinetic
energy of the non-relativistic electron as EK = p2/2me and writing e2 = 4πα to
give

(
dσ
dΩ

)

Rutherford
=

α2

16E2
K sin4(θ/2)

. (7.13)

The Rutherford scattering cross section of (7.13) is usually derived from first-order
perturbation theory by considering the scattering of a non-relativistic electron in the
static Coulomb potential of the proton, V(r) = α/r. Therefore, it can be concluded
that in the non-relativistic limit, only the interaction between the electric charges
of the electron and proton contribute to the scattering process; there is no signifi-
cant contribution from the magnetic (spin–spin) interaction. It should be noted that
the angular dependence of the Rutherford scattering cross section originates solely
from the 1/q2 propagator term.

7.2.2 Mott scattering

Mott scattering is the limit of electron–proton elastic scattering where the electron
is relativistic but the proton recoil still can be neglected. These conditions apply
when me % E % mp. In this case, the parameter κ ≈ 1 and two of the four possible
electron currents of (7.2)−(7.5) are zero. Writing E = γeme and taking the limit
βeγe # 1 for which E ≈ p, the matrix element of (7.9) reduces to

〈|M2
f i|〉 ≈

m2
pe4

E2 sin4(θ/2)
cos2 θ

2
,

which when substituted into (7.11) gives

(
dσ
dΩ

)

Mott
=

α2

4E2 sin4(θ/2)
cos2 θ

2
. (7.14)

The Mott scattering cross section formula of (7.14) could have been derived by
considering the scattering of a relativistic electron in the Coulomb potential of a
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spin-less nucleus. Again it can be concluded that the contribution to the scattering
process from a purely magnetic spin–spin interaction is negligible.

7.3 Form factors

The Rutherford and Mott scattering formulae of (7.13) and (7.14) can be calcu-
lated from first-order perturbation theory for scattering in the Coulomb potential
from a point-like object. To account for the finite extent of the charge distribution
of the proton, this treatment must be modified by introducing a form factor. Qual-
itatively, the form factor accounts for the phase differences between contributions
to the scattered wave from different points of the charge distribution, as indicated
in Figure 7.3. If the wavelength of the virtual photon is much larger than the radius
of the proton, the contributions to the scattered wave from each point in the charge
distribution will be in phase and therefore add constructively. When the wavelength
is smaller than the radius of the proton, the phases of the scattered waves will have a
strong dependence on the position of the part of the charge distribution responsible
for the scattering. In this case, when integrated over the entire charge distribution,
the negative interference between the different contributions greatly reduces the
total amplitude.

The mathematical expression for the form factor (which is not a Lorentz-invariant
concept) can be derived in the context of first-order perturbation theory. Consider
the scattering of an electron in the static potential from an extended charge distri-
bution, as indicated in Figure 7.4. The charge density can be written as Q ρ(r′),

!Fig. 7.3 A cartoon indicating the origin of the form factor in elastic scattering.

e-

e-
p1

p3

V (r)

r

r - r!

r!!Fig. 7.4 The potential due to an extended charge distribution.
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where Q is the total charge and ρ(r′) is the charge distribution normalised to
unity

∫
ρ(r′) d3r′ = 1 .

The potential at a distance r from the origin, written in terms of this charge density
is simply

V(r) =
∫

Qρ(r′)
4π|r − r′|d

3r′ . (7.15)

In the Born approximation, where the wavefunctions of the initial-state and scat-
tered electrons are expressed as the plane waves, ψi = ei(p1·r−Et) and ψ f = ei(p3·r−Et),
the lowest-order matrix element for the scattering process is

M f i = 〈ψ f |V(r)|ψi〉 =
∫

e−ip3·rV(r)eip1·r d3r.

Writing q = (p1 − p3) and using the potential of (7.15) leads to

M f i =

∫ ∫
eiq·r Qρ(r′)

4π|r − r′| d
3r′d3r

=

∫ ∫
eiq·(r−r′)eiq·r′ Qρ(r′)

4π|r − r′| d
3r′d3r . (7.16)

By expressing the difference r − r′ as the vector R, the integral of (7.16) separates
into two parts

M f i =

∫
eiq·R Q

4π|R|d
3R

∫
ρ(r′)eiq·r′ d3r′ .

The integral over d3R is simply the equivalent expression for scattering from a
potential due to a point charge. Hence the matrix element can be written

M f i =Mpt
f iF(q2),

where Mpt
f i is the equivalent matrix element for a point-like proton and the form

factor F(q2) is given by

F(q2) =
∫

ρ(r)eiq·r d3r.

Therefore, in order to account for the extended charge distribution of the proton,
the Mott scattering cross section of (7.14) has to be modified to

(
dσ
dΩ

)

Mott
→ α2

4E2 sin4(θ/2)
cos2

( θ
2

) ∣∣∣F(q2)
∣∣∣2 . (7.17)

The form factor F(q2) is the three-dimensional Fourier transform of the charge
distribution. If the wavelength of the virtual photon is large compared to the size of
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!Fig. 7.5 Possible three-dimensional charge distributions and the corresponding form factors plotted as a
function of q2.

the charge distribution then q · r ≈ 0 over the entire volume integral. In this case,
the scattering cross section is identical to that for a point-like object and therefore,
regardless of the form of the charge distribution, F(0) = 1. In the limit where the
wavelength is very small compared with the size of the charge distribution, the
phases of the contributions from different regions of the charge distribution will
vary rapidly and will tend to cancel and F(q2 → ∞) = 0. Thus, for any finite
size charge distribution, the elastic scattering cross section will tend to zero at high
values of q2. The exact form of F(q2) depends on the charge distribution; some
common examples and the corresponding form factors are shown in Figure 7.5.
For a point-like particle, F(q2) = 1 for all q.

7.4 Relativistic electron–proton elastic scattering

In the above calculations of the Rutherford and Mott elastic scattering cross sec-
tions, it was assumed that the recoil of the proton could neglected. This a reasonable
approximation provided |q| % mp. In this low-energy limit, it was inferred that the
contribution to the scattering process from the pure magnetic spin–spin interaction
is negligibly small. For electron–proton elastic scattering at higher energies, the
recoil of the proton cannot be neglected and the magnetic spin–spin interaction
becomes important.

For the general case, the four-momenta of the initial- and final-state particles,
defined in Figure 7.6, can be written as

p1 = (E1, 0, 0, E1), (7.18)

p2 = (mp, 0, 0, 0), (7.19)

p3 = (E3, 0, E3 sin θ, E3 cos θ), (7.20)

p4 = (E4,p4). (7.21)
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p1!Fig. 7.6 The kinematics of electron–proton scattering in the proton rest frame.

Here the energy of the scattered electron is no longer equal to that of the incident
electron. Assuming that the electron energy is sufficiently large that terms of O(m2

e)
can be neglected, and (initially) treating the proton as a point-like Dirac particle,
the matrix element for the elastic scattering process e−p→ e−p is given by (6.67)

〈|M f i|2〉 =
8e4

(p1 − p3)4

[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3) − m2

p(p1.p3)
]
. (7.22)

7.4.1 Scattering kinematics

In most electron–proton elastic scattering experiments, the final-state proton is not
observed. Consequently, the matrix element of (7.22) is most usefully expressed in
terms of the experimental observables, which are the energy and scattering angle
of the electron. To achieve this, the final-state proton four-momentum p4 can be
eliminated using energy and momentum conservation, p4 = p1+ p2− p3. From the
definitions of the four-momenta in (7.18)−(7.20), the four-vector scalar products
in (7.22) which do not involve p4 are

p2 ·p3 = E3mp, p1 ·p2 = E1mp and p1 ·p3 = E1E3(1 − cos θ).

The two terms involving p4, which can be rewritten using p4 = p1 + p2 − p3, are

p3 ·p4 = p3 ·p1 + p3 ·p2 − p3 ·p3 = E1E3(1 − cos θ) + E3mp,

p1 ·p4 = p1 ·p1 + p1 ·p2 − p1 ·p3 = E1mp − E1E3(1 − cos θ),

where the terms p1 ·p1 = p3 ·p3 = m2
e have been been dropped. Hence, the matrix

element of (7.22), expressed in terms of the energy of the final-state electron E3

and the scattering angle θ is

〈|M f i|2〉 =
8e4

(p1 − p3)4 mpE1E3

[
(E1 − E3)(1 − cos θ) + mp[(1 + cos θ)

]

=
8e4

(p1 − p3)4 2mpE1E3

[
(E1 − E3) sin2 θ

2
+ mp cos2 θ

2

]
. (7.23)

The four-momentum squared of the virtual photon, q2 = (p1 − p3)2, also can be
expressed in terms of E3 and θ using

q2 = (p1 − p3)2 = p2
1 + p2

3 − 2p1 ·p3 ≈ −2E1E3(1 − cos θ), (7.24)
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where again the terms p1 ·p1 = p3 ·p3 = m2
e have been neglected. Hence, to a good

approximation,

q2 = −4E1E3 sin2 θ

2
. (7.25)

Because q2 is always negative, it is more convenient to work in terms of Q2

defined by

Q2 ≡ −q2 = 4E1E3 sin2 θ

2
, (7.26)

which is always positive.
The energy lost by the electron in the scattering process, E1 − E3, can be ex-

pressed in terms of Q2 by first noting that

q·p2 = (p1 − p3)·p2 = mp(E1 − E3). (7.27)

A second equation for q·p2 can be obtained by expressing q in terms of the proton
four-momenta, q = p4 − p2, such that

p2
4 = (q + p2)2 = q2 + 2q·p2 + p2

2,

which, using p2
2 = p2

4 = m2
p, gives

q·p2 = −q2/2. (7.28)

Equating (7.27) and (7.28) enables (E1 − E3) to be expressed as a function of Q2,

E1 − E3 = −
q2

2mp
=

Q2

2mp
, (7.29)

which (unsurprisingly) demonstrates that the electron always loses energy in the
scattering process. Using the relations of (7.25) and (7.29), the spin-averaged matrix
element squared of (7.23) can be expressed as

〈|M f i|2〉 =
m2

pe4

E1E3 sin4(θ/2)


cos2 θ

2
+

Q2

2m2
p

sin2 θ

2


 .

The differential cross section again can be obtained the cross section formula of
(3.47), giving

dσ
dΩ
≈ 1

64π2

(
E3

mpE1

)2

〈|M f i|2〉.

Hence, the differential cross section for the scattering of relativistic electrons from
a proton that is initially at rest is

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1


cos2 θ

2
+

Q2

2m2
p

sin2 θ

2


 . (7.30)
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Although (7.30) is expressed in terms of Q2, E3 and θ, it is important to realise
that there is only one independent variable; both Q2 and E3 can be expressed in
terms of the scattering angle of the electron. This can be seen by firstly equating
(7.24) and (7.29) to give

−2mp(E1 − E3) = −2E1E3(1 − cos θ),

and hence

E3 =
E1mp

mp + E1(1 − cos θ)
. (7.31)

Substituting (7.31) back into (7.24) then gives an expression for Q2 in terms of the
electron scattering angle

Q2 =
2mpE2

1(1 − cos θ)

mp + E1(1 − cos θ)
. (7.32)

Therefore, if the scattering angle of the electron is measured in the elastic scattering
process, the entire kinematics of the interaction are determined. In practice, mea-
suring the e−p→ e−p differential cross section boils down to counting the number
of electrons scattered in a particular direction for a known incident electron flux.
Furthermore, because the energy of an elastically scattered electron at a particular
angle must be equal to that given by (7.31), by measuring the energy and angle
of the scattered electron, it is possible to confirm that the interaction was indeed
elastic and that the unobserved proton remained intact.

In the limit of Q2 % m2
p and E3 ≈ E1, the expression for the electron–proton

differential cross section of (7.30) reduces to that for Mott scattering, demonstrat-
ing that the Mott scattering cross section formula applies when me % E1 % mp.
Equation (7.30) differs from the Mott scattering formula by the additional factor
E3/E1, which accounts for the energy lost by electron due the proton recoil, and
by the new term proportional to sin2(θ/2), which can be identified as being due to
a purely magnetic spin–spin interaction.

7.5 The Rosenbluth formula

Equation (7.30) is the differential cross section for elastic e−p → e−p scattering
assuming a point-like spin-half proton. The finite size of the proton is accounted
for by introducing two form factors, one related to the charge distribution of the
proton, GE(Q2), and the other related to the magnetic moment distribution within
the proton, GM(Q2). It can be shown that the most general Lorenz-invariant form
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for electron–proton scattering via the exchange of a single photon, known as the
Rosenbluth formula, is

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1



G2

E + τG2
M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2


 , (7.33)

where τ is given by

τ =
Q2

4m2
p
. (7.34)

In the Lorentz-invariant Rosenbluth formula, the form factors GE(Q2) and GM(Q2)
are functions of the four-momentum squared of the virtual photon. Unlike the form
factor F(q2) introduced previously, which was a function of the three-momentum
squared, the form factors GE(Q2) and GM(Q2) cannot be interpreted simply as the
Fourier transforms of the charge and magnetic moment distributions of the proton.
However, the relation between GE(Q2) and GM(Q2) and the corresponding Fourier
transforms can be obtained by writing

Q2 = −q2 = q2 − (E1 − E3)2,

which from (7.29) gives

Q2

1 +

Q2

4m2
p


 = q2 .

Therefore, in the limit where Q2 % 4m2
p, the time-like component of Q2 is rela-

tively small and Q2 ≈ q2. Thus, in this low-Q2 limit, the form factors GE(Q2) and
GM(Q2) approximate to functions of q2 alone and can be interpreted as the Fourier
transforms of the charge and magnetic moment distributions of the proton

GE(Q2) ≈ GE(q2) =
∫

eiq·rρ(r)d3r,

GM(Q2) ≈ GM(q2) =
∫

eiq·rµ(r)d3r .

There is one further complication. The form of the Rosenbluth equation follows
from (7.30), which was obtained from the QED calculation where the proton was
treated as a point-like Dirac particle. But the magnetic moment of a point-like Dirac
particle (see Appendix B.1) is related to its spin by

µ =
q
m

S,

whereas the experimentally measured value of the anomalous magnetic moment of
the proton (discussed further in Chapter 9) is

µ = 2.79
e

mp
S .
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For consistency with this experimental observation, the magnetic moment distribu-
tion has to be normalised to +2.79 rather than unity, and therefore

GE(0) =
∫

ρ(r) d3r = 1

GM(0) =
∫
µ(r) d3r = +2.79.

It is worth noting that, even taken in isolation, the observation of the anomalous
magnetic moment of the proton already provides evidence that the proton is not a
point-like particle.

7.5.1 Measuring GE(Q2) and GM(Q2)

The e−p → e−p differential cross section is a function of both the charge and
magnetic moment distributions of the proton. Whilst it is tempting to assume that
magnetic moment distribution follows that of the charge distribution, GM(Q2) =
2.79 GE(Q2), there is no a priori justification for making this assumption. Fortu-
nately GM(Q2) and GE(Q2) can be determined separately from experiment. This
can be seen by writing the Rosenbluth formula of (7.33) as

dσ
dΩ
=



G2

E + τG
2
M

(1 + τ)
+ 2τG2

M tan2 θ

2


 ·

(
dσ
dΩ

)

0
, (7.35)

where
(

dσ
dΩ

)

0
=

α2

4E2
1 sin4(θ/2)

(
E3

E1

)
cos2 θ

2
, (7.36)

is the Mott cross section, modified to account for the proton recoil. At low Q2,
where τ % 1, the electric form factor dominates and (7.35) is approximately

dσ
dΩ

/(
dσ
dΩ

)

0
≈ G2

E .

In this limit, G2
E is equivalent to the form factor |F(q)|2 described previously. At

high Q2, where τ # 1, the purely magnetic spin–spin term dominates and (7.35)
approximates to

dσ
dΩ

/(
dσ
dΩ

)

0
≈

(
1 + 2τ tan2 θ

2

)
G2

M .

In general, the Q2 dependence of GM(Q2) and GE(Q2) can be inferred from
e−p → e−p elastic scattering experiments by varying the electron beam energy.
For each beam energy, the differential cross section is measured at the angle cor-
responding to a particular value of Q2, given by (7.32). For example, Figure 7.7a
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!Fig. 7.7 Low energy e−p→ e−p elastic scattering data. Data from Hughes et al. (1965).

shows the measured e−p → e−p differential cross sections for six different scatter-
ing angles and a range of beam energies. The five data points that are highlighted
all correspond to e−p → e−p elastic scattering at Q2 = 0.292 GeV2. In this way,
the cross section can be measured at fixed Q2 but over a range of scattering angles.
Figure 7.7b shows, for the five data points with Q2 = 0.292 GeV2, the measured
cross sections normalised to the expected Mott cross section of (7.36), plotted as
a function of tan2(θ/2). The observed linear dependence on tan2(θ/2) is expected
from (7.35), where it can be seen that the gradient and intercept with the y-axis are
given respectively by

m = 2τ
[
GM(Q2)

]2
and c =

[
GE(Q2)

]2
+ τ

[
GM(Q2)

]2

(1 + τ)
.

Hence, the data shown in Figure 7.7b can be used to extract measurements of both
GE(Q2) and GM(Q2) at Q2 = 0.292 GeV2 (see Problem 7.6). A similar analysis
can be applied to cross section measurements corresponding to different values
of Q2, providing an experimental determination of the electric and magnetic form
factors of the proton over a range of Q2 values, as shown in Figure 7.8a. The fact
that the measured form factors decrease with Q2 provides a concrete experimental
demonstration that the proton has finite size. The shape of GM(Q2) closely follows
that of GE(Q2), showing that the charge and magnetic moment distributions within
the proton are consistent. Furthermore, the measured values extrapolated to Q2 = 0
are in agreement with the expectations of GE(0) = 1 and GM(0) = 2.79. Finally,
Figure 7.8b shows measurements of GM(Q2) at Q2 values up to 32 GeV2. For these
data recorded at higher values of Q2, the contribution from GE(Q2) is strongly
suppressed and only GM(Q2) can be measured.
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!Fig. 7.8 (a) Measurements of GE(Q2) and GM(Q2) from e−p → e−p elastic scattering data at low Q2, adapted from
Hughes et al. (1965) and references therein. (b) Measurements of GM(Q2) at higher Q2, data from Walker et al.
(1994) (solid circles) and Sill et al. (1993) (open circles). The curves correspond to the dipole function described
in the text.

The data shown in Figures 7.8a and 7.8b are reasonably well parameterised by
the empirically determined “dipole function”

GM(Q2) = 2.79GE(Q2) ≈ 2.79
1

(1 + Q2/0.71 GeV2)2 . (7.37)

By taking the Fourier transform of the dipole function for GE(Q2), which provides
a good description of the low Q2 data where Q2 ≈ q2, the charge distribution of
the proton is determined to be

ρ(r) ≈ ρ0e−r/a,

with a ≈ 0.24 fm. This experimentally determined value for a corresponds to a
proton root-mean-square charge radius of 0.8 fm.

7.5.2 Elastic scattering at high Q2

At high Q2, the electron–proton elastic scattering cross section of (7.35) reduces to
(

dσ
dΩ

)

elastic
∼ α2

4E2
1 sin4(θ/2)

E3

E1




Q2

2m2
p
G2

M sin2 θ

2


 .

From (7.37) it can be seen that in the high-Q2 limit, GM(Q2) ∝ Q−4 and therefore
(

dσ
dΩ

)

elastic
∝ 1

Q6

(
dσ
dΩ

)

Mott
.
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Consequently, due to the finite size of the proton, the elastic scattering process
becomes increasingly unlikely for interactions where the virtual photon has large
Q2. If the inelastic scattering process, where the proton breaks up, also involved
a coherent interaction of the virtual photon with the charge and magnetic moment
distribution of the proton as a whole, a similar high-Q2 suppression of the cross
section would be expected. In practice, no such suppression of the inelastic e−p
cross section is observed. This implies that the interaction takes place with the
constituent parts of the proton rather than the proton as a whole. This process of
high-energy deep inelastic scattering is the main topic of next chapter.

Summary

In this chapter, the process of e−p → e−p elastic scattering has been described in
some detail. In general, the differential elastic scattering cross section is given by
the Rosenbluth formula

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1



G2

E + τG2
M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2


 ,

where the form factors GE(Q2) and GM(Q2) describe the charge and magnetic
moment distributions of the proton. The techniques used to measure the form fac-
tors were described in some detail. It is important that you understand the concepts;
they will be used again in the following chapter.

Because of the finite size of the proton, both GE(Q2) and GM(Q2) become small
at high Q2 and the elastic scattering cross section falls rapidly with increasing
Q2. Consequently, high-energy electron–proton scattering is dominated by inelas-
tic processes where the virtual photon interacts with the quarks inside the proton,
rather than the proton as a coherent whole.

Problems

7.1 The derivation of (7.8) used the algebraic relation

(γ + 1)2(1 − κ2)2 = 4,

where

κ =
βγ

γ + 1
and (1 − β2)γ2 = 1.

Show that this holds.


